摘要
目的 探究分析人工智能在两慢病健康管理中的应用效果。方法 选取于2023年7月至2024年7月期间,院内收治的两慢病患者共102例,作为本次研究对象。以患者出生日期为基础,应用随机数表法,将102例两慢病患者随机分为对照组与观察组。对照组采用常规健康管理,观察组采用基于人工智能的健康管理,干预结束后,对比两组患者的血糖指标以及血压指标。结果 在血糖指标方面,干预前两组患者对比无明显差异,P>0.05,干预后观察组餐后2小时血糖以及空腹血糖指标均低于对照组,P<0.05。在血压指标方面,干预前两组患者对比无明显差异,P>0.05,干预后观察组收缩压以及舒张压均低于对照组,P<0.05。结论 基于人工智能的健康管理可显著改善两慢病患者血糖指标以及血压指标,值得推广与应用。
关键词: 两慢病;人工智能;健康管理;血压指标;血糖指标
Abstract
Objective To explore and analyze the application effect of artificial intelligence in the health management of two chronic diseases. Methods A total of 102 patients with chronic diseases admitted to the hospital between July 2023 and July 2024 were selected as the subjects of this study. Based on the patient's date of birth, 102 patients with chronic diseases were randomly divided into a control group and an observation group using a random number table method. The control group received routine health management, while the observation group received AI based health management. After the intervention, the blood glucose and blood pressure indicators of the two groups of patients were compared. Results In terms of blood glucose indicators, there was no significant difference between the two groups of patients before intervention, P>0.05. After intervention, the 2-hour postprandial blood glucose and fasting blood glucose indicators in the observation group were lower than those in the control group, P<0.05. In terms of blood pressure indicators, there was no significant difference between the two groups of patients before intervention, P>0.05. After intervention, the systolic and diastolic blood pressure in the observation group were lower than those in the control group, P<0.05. Conclusion Health management based on artificial intelligence can significantly improve blood glucose and blood pressure indicators in patients with chronic diseases, and it is worth promoting and applying.
Key words: Two chronic diseases; artificial intelligence; Health management; Blood pressure indicators; Blood glucose indicators
参考文献 References
[1] 张洁.基于人工智能的健康管理系统在慢性疾病管理中的应用[J].中国卫生标准管理,2024,15(11):5-8.
[2] 李星霖,韦鑫.基于“互联网+医疗+家庭”的慢性病全周期管理平台设计[J].无线互联科技,2024,21(10):86-88.
[3] 曲文英,宋立涛.基于人工智能智能算法的全流程慢病患者健康风险预警方法[J].电脑知识与技术,2024, 20(13): 31-33.
[4] 王子仪,盛宇俊,崔勇.人工智能在皮肤科慢病管理中的应用与前景[J].皮肤科学通报,2024,41(01):11-16.
[5] 李果,王慧玲,朱玉芬,等.人工智能机器人在妊娠期糖尿病孕妇居家自我管理中的应用[J].中国护理管理,2023, 23(8): 1220-1224.
[6] 贺婷,袁丽,杨小玲.数字健康技术在糖尿病防治和管理中的应用[J].中国数字医学,2023,18(08):88-94.
[7] 郑卓恩,梅智盈.人工智能技术在糖尿病患者食品营养管理中的应用探析[J].食品安全导刊,2023(22):152-154.
[8] 王思源,周峰,高俊岭,等.人工智能电话随访在高血压随访管理中的应用[J].中国慢性病预防与控制,2021, 29(11): 817-820.
[9] 黄辛夷,周小平,郭建军,等.妊娠高血压人工智能随访系统设计与应用[J].医学信息学杂志,2024,45(01):89-92.
[10] 刘东,任海玲,刘媛.大数据等新一代信息技术在糖尿病患者管理机制中的探讨[J].数字技术与应用,2023, 41(06): 50-52+90.